
A Novel Approach for Integrating Heterogeneous
Database through XML

V.Rajeswari*, Dr. Dharmishtan K. Varughese **

* Department of Information Technology, Karpagam College of Engineering, Coimbatore 32

** Department of Electronics and Communication Engg, Karpagam College of Engineering, Coimbatore –32

Abstract - This paper illustrates an interactive mapping
technique based on XML technology being tested in some
possible scenarios and its adaptability verified in simplifying the
integration and exchange of data between different database
systems. This work is part of an effort in the development of a
new technique for storing and mapping XML and different types
of databases. The data from XML are compiled to MS-SQL
Server, Oracle, MySQL, MS-Access and IBM-DB2.

Keywords – Heterogeneous databases, DOM, XML Parser, SAX.

I. INTRODUCTION

Database systems are the store house tools and
backbones of the IT industry. In the early days the schemas
for the different databases were developed without
consideration of data integration with other systems [1]. They
had different terminologies and structures. Since world
information in the foreseeable future will continue to be saved
in relational data stores because of scalability, reliability and
performance reasons, it is now imperative to be able to map
XML to relational databases. It is used as a common data
format for cross-platform information exchange over the
internet [3]. It separates presentation from data structure and
content. But its rate of acceptance has been limited by the
mismatch between XML and legacy relational databases [2].
So a mediator is required to map XML documents to legacy
RDBMS.

Over the last few years, XML has become an
indisputable standard both for data exchange and content
management. XML has made an impression that XML
databases will eventually replace more traditional RDBMS.
Now the industry has started to move towards XML. As a
consequence, many thousands of database and application
developers are now facing the development challenge of
converting XML data to a relational format which is a
prerequisite for storing the vast amount of data in repositories.
XML is frequently used for publishing as well as exchanging
data.

II. NEED FOR EXTRACTING DATA FROM HETEROGENEOUS

DATA SOURCES

Data is typically stored in many different data storage
systems[4]. Extracting data from all sources and merging the
data into a single, consistent dataset is challenging. This
situation can occur for a number of reasons.

Trend Analysis refers to the concept of collecting
information and attempting to spot a pattern or trend [6] in the

information. Trend Analysis [6] refers to techniques for
extracting an underlying pattern of behavior in a time series
which would otherwise be partly or nearly completely hidden
by noise. A simple description of these techniques is trend
estimation which can be undertaken within a formal
regression analysis. The data of the organization are stored in
the legacy databases. These data are not useful for the day-to-
day operations. They are valuable for trend analysis that
requires data collected over a long period of time.

A Data warehouse [7] is a subject-oriented, integrated,
time-variant and non-volatile collection of data in support of
management’s decision making process. A data warehouse
provides a common data model for all data of interest
regardless of the data’s source. This makes it easier to report
and analyze information from multiple data models. In a
typical data warehousing application, the branches of an
organization [7]may use different data storage technologies to
store the operational data. The application package may need
to extract data from different relational databases before it can
merge the data.

III. XML IN EXTRACTING DATA FROM HETEROGENEOUS DATA

SOURCES

 XML can be used to describe and identify information
accurately [10] and unambiguously, in a way that
computers can be programmed to understand the
information.

 In XML model the documents and fragments of
documents are represented as ordered and node-labeled
trees [10].

 XML allows documents which are all the same type to be
created and handled consistently [10] and without
structural errors, because it provides a standardized way
of describing, controlling, or allowing/disallowing
particular types of document structure.

 XML provides a robust and durable format for
information storage and transmission. XML is robust
because it is based on a proven standard and it can be
tested and verified. XML is persistent because it uses
plain-text file formats which will outlast proprietary
binary ones.

 XML provides a common syntax for messaging systems
for the exchange of information between applications.
Previously, each messaging system had its own format
and all were different, which made inter-system
messaging unnecessarily messy, complex and expensive.

V. Rajeswari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 633-640

633

If everyone uses the same syntax it makes writing these
systems much faster and more reliable.

 XML is a freeware [10]. XML information can be
manipulated programmatically. So XML documents can
be pieced together from disparate sources or taken apart
and re-used in different ways. They can be converted into
any other format with no loss of information.

 XML separates presentation from content. XML file
contains the document information and identifies its
structure. The formatting and other processing needs are
identified separately in a style sheet or processing system.
Several application domains like e-commerce and
bibliographic references provide XML information on the
web[17].

The unique strength of using XML as a software data
format includes:

a. Simple syntax
b. Easy to generate and parse
c. Support for nesting
d. Nested elements allow programs to represent complex

structures easily
e. Easy to debug
f. Language and Platform Independent
g. Openness
h. Extensibility
i. Self Description
j. Rapid adoption by industry
k. Contains machine readable Context Information[15]
l. XML and Unicode guarantee that the data files will be

portable across virtually every popular computer
architecture.

IV. PROBLEMS IN HETEROGENEOUS DATABASE INTEGRATION

Heterogeneous database integration systems are

computational models and software implementations. They
provide a single, uniform query interface to data that are
stored and managed in multiple, heterogeneous data sources
[12][24].The goal of such systems is to provide database
transparency to users as if the data were not distributed and all
of the data sources were of the same type. In spite of
standardization efforts, the database heterogeneity still
remains. This occurs mostly in web applications. Some of the
main challenges are:

a) Query Processing Models

The core challenge of heterogeneous database
integration is that different data sources have different query
models [12]. A query model is the model of data storage and
information retrieval. The user of the database must know the
order in which the data is to be retrieved from the database. A
query model consists of the data model, database schema,
query language and data format. For example the data may be
stored variously stored in flat files, XML files, binary files,
spreadsheets and in relational object-relational and object-
oriented databases[14].

b) Independent Data Sources
Generally data sources are autonomous. This means

that developers of the heterogeneous database do not have
control over the data sources to be integrated. Each data
source is free to modify its data and schema and to restrict
access to it.

c) Semantic Heterogeneity

Similar data are often represented differently in
different data sources. This representational heterogeneity
consists of structural, naming, semantic and content
differences [19]. Structural differences refer to schema
differences. Naming or syntactic [11] differences occur when
semantically equivalent objects are named differently in
different data sources. Semantic differences occur when
names of objects in different data sources are similar or the
same, but their meanings differ. Content differences refer to
differences in data between the data sources.

Semantic conflict exists when the communicating
parties use different representations or interpretations of the
information that is being communicated. Interpersonal
communication can require an explicit translation process.
This process is called as semantic reconciliation [11].

Just as semantic reconciliation must occur in
interpersonal communication, it must also occur when
different information systems attempt to communicate.

Databases can also be heterogeneous on many levels.
They can have different data models or different conceptual
models. It means that they have different meanings and
different representations of the same reality. They may also
have different naming conventions [11] and different ways to
organize the information. It is imperative to understand that
these lead to conflicts.
 The following are the types of conflicts:
 Value-to-Value conflicts
 Value-to-Attribute conflicts
 Value-to-Table conflicts
 Attribute-to-Attribute conflicts
 Attribute-to-table conflicts
 Table-to-Table conflicts

d) Technical Heterogeneities: These challenges occur due to
differences in hardware platforms, operating systems, access
protocols, transport formats and programming languages
between the data sources.

V. NEED TO IMPORT XML DOCUMENTS TO RELATIONAL

DATABASES

A number of reasons can be cited warranting the
need to move XML to a relational data store. Businesses
across industries are adopting XML to share data between
applications (A2A) and organizations (B2B). XML is a
natural and persistent way for heterogeneous database systems
to share data across networks. In addition, it is rapidly being
adopted by software companies as a standard means of
sending and receiving data. In fact, XML messaging is
progressively starting to replace the proprietary EDI format

V. Rajeswari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 633-640

634

for business-to business transactions. XML’s self-describing
nature [8] makes it easy to exchange transactional data
between business partners and incompatible systems.
Therefore, it largely simplifies B2B [12] communications and
is seen as a cost-effective and open-standard replacement for
EDI.

XML database’s biggest competitors are relational
databases such as Oracle or SQL Server. They have started to
interface directly with XML data. But the RDBMS-XML
interfaces [13] differ from vendor to vendor and are not
portable. The difference between these two data storage
formats makes it very difficult to map one to the other. The
significant development and customization is necessary to
import XML documents to relational databases.

VI. HETEROGENEOUS SYSTEM STRUCTURE

The data warehouse creation module is regarded as
user of the heterogeneous database system. The user poses a
global query on the integrated system. The global site
decomposes the global query into sub-queries to request each
participant to return the data in XML format [1]. This can be
easily achieved in contemporary commercial database
products. Besides, the DBA in each site should prepare some
XSLT format files, together with some necessary template
files, in advance to transform local data into the global schema
format [2]. Finally, the transformed data are integrated into a
consolidated view with the global query applied on it to return
global data to the user. The integration process utilizes the
semantic knowledge of all participate local schemas. This
should be prepared or discovered before integration.

 fig 1 : Heterogeneous Database Architecture

In data warehousing, data from each source is

extracted, merged and stored in a centralized repository [15].
The warehouse is a database with a global schema that
combines the schemas of the sources. Queries on the system
are evaluated at the warehouse without accessing the original
sources. Client updates to the warehouse are usually not
allowed. Since they are not propagated to the original sources
and would make the warehouse inconsistent with the sources.
Instead, the warehouse is updated from the data in the original
sources. There are multiple policies for updating the
warehouse from the sources.

Database integration is required for data warehousing. It
relies less on the network and allows for improved query
performance and optimization, since queries are processed
locally in the warehouse.

VII. MEDIATION

In mediation a technique called a “mediator” accepts
a query from the client, determines the sources needed to
answer the query and decomposes the query into sub queries.
The sub queries are translated to the source-specific query
language via modules called “wrappers.” The results from the
sources are translated back into the common query language
by the wrappers. Finally, the mediator obtains results from the
wrappers, combines them and returns the final answer to the
client.

Mediation can be query-centric known as global-as-
view or source-centric known as local-as-view. In query-
centric mediation, users pose queries on the global views
exported by the mediator. The mediator uses global views to
expand user queries to queries on source data.

 In source-centric mediation, global predicates are
used to construct source views and to pose user queries. The
mediator uses source views to answer user queries. The main
advantage of mediation is that it reduces the maintenance
required when data sources are modified or when new ones
emerge.

VIII. XML DATABASE TYPES

 There are two categories to consider when deciding
which type of XML database fits a particular application:

 Data-centric[9]: Products that actually store the data or

content in non-XML format
 Document-centric: Products that store complete XML

documents in relational tables or on disk in file structures
Data-centric databases store data separate from the XML
schema, usually just transforming the original content into
relational tables. These products are referred to as XML-
enabled databases.

If an XML document is needed, the data stored in
relational tables can be queried and an XML document
created. Most major relational databases ORACLE and SQL
Server fall into this category.

 Document-centric databases store the entire XML
document in a relational, text, or proprietary format. These are
called native XML databases.

IX. INTEGRATION OF QUERY , SELECTION AND

TRANSFORMATION PROCESS

The larger objective is to switch from a database-
centric approach of application development to one that is
based entirely on the XML paradigm [6]. One side effect of
this paradigm shift is the possibility of using standardized
XML processors – including XQuery, XPath and XSLT – to
further query, filter and transform the XML views obtained
from relational data by means of mapping techniques. One

V. Rajeswari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 633-640

635

obvious difficulty of running XML processors on mapped
XML views is that XML views are not materialized unless
cached in memory, stream or file. This may become a
blocking issue if the XML view obtained from the mapping
process is large. Either the cached view is too large for
memory or disc space or the time needed to post-process the
XML view by an XML processor is unacceptably long.

To overcome these problems the following strategies
are used.
 Develop mapping aware XML processor. Such processors

understand mapping definitions and translate XML
processor statement into native SQL statements.

 The standard XML processors from software vendors or

open source are used. The first objective is to reduce the
size of the XML record set generated by mapping process.
To reduce the size of the XML record set, they can
perform an initial parsing of the XML processor query
statement to extract only the relevant predicate
information to append to the SQL generated by the
mapping process.

 Fig. 2. Integration of Query Selection

In accordance with the query selection process
illustrated in Figure.2, the new technique discussed, primarily
detects the type of the database used and decides the course of
action.. Then according to the document-centric approach of
the XML database type, the technique stores the complete
XML document into relational tables.

X. PROGRAMMING INTERFACE

A variety of APIs for accessing XML have been
developed and used, and some have been standardized.
Existing APIs for XML processing tend to fall into these
categories:

• Stream-oriented APIs accessible from a
programming language, for example SAX and StAX.

• Tree-traversal APIs accessible from a programming
language, for example DOM and XOM.

• XML data binding, which provides an automated
translation between an XML document and programming-
language objects.

• Declarative transformation languages such as XSLT
and XQuery.

Stream-oriented facilities require less memory for certain
tasks which are based on a linear traversal of an XML
document. They are faster and simpler than other alternatives.

Tree-traversal and data-binding APIs typically require the
use of more memory, But they are found to be more
convenient for use by programmers. Some of them may
include declarative retrieval of document components through
decides the cour the use of XPath expressions.

XI. SAX INTERFACE

SAX [14] is a lexical, event-driven interface in which a
document is read serially and its contents are reported as
"callbacks" to various methods on a handler object of the
user's design. SAX is a common front-end for XML parsers,
like the JDBC for database access. SAX is widely used by
open-source projects like Apache and by corporate users like
Sun, IBM, Oracle and Microsoft.

The SAX parser is created by the

javax.xml.parsers.SAXParserFactory. The SAX parser does
not create an in-memory representation of the XML document
and so it is faster and uses less memory. Instead, the SAX
parser informs clients of the XML document structure, by
invoking callbacks, which is by invoking methods on an
org.xml.sax.helpers.DefaultHandler instance provided to the
parser.

The DefaultHandler class implements the
ContentHandler, the ErrorHandler, the DTDHandler and the
EntityResolver interfaces. The clients will call the methods
definesd in the ContentHandler interface. Those methods are
called when the SAX parser encounters the corresponding
elements in the XML document. The most important methods
in this interface are:

• startElement() and endElement(): These methods are
called at the start and end of a document element.

• characters() : This method is called with the text
data contents contained between the start and end tags of an
XML document element.

Clients provide a subclass of the DefaultHandler that
overrides these methods and processes the data. This involves
storing the data into a database or writing it out to a stream.
During parsing, the parser may need to access external
documents.

XII. XML PROCESSING WITH SAX

A parser which implements SAX, functions as a stream
parser, with an event-driven API. The user defines a number
of callback methods that will be called when events occur
during parsing. The SAX events include:
 XML Text nodes
 XML Element nodes

V. Rajeswari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 633-640

636

 XML Processing Instructions
 XML Comments

Events are fired when each of these XML features are
encountered, and again when the end of them is encountered.
XML attributes are provided as part of the data passed to
element events. SAX parsing is unidirectional; previously
parsed data cannot be re-read without starting the parsing
operation again.

Example

<?xml version="1.0" encoding="UTF-8"?>
<EMP>
<EMPNO> IT1000 </EMPNO>
<ENAME> JAMES </ENAME>
<JOB>CEO</JOB>
<HIREDATE>21-SEP-2000</HIREDATE>
</EMP>

 fig 4 : XML Document

This XML document [25] [16], when passed through a SAX
parser, will generate a sequence of events like the following:

 XML Processing Instruction, named xml, with attributes
version equal to "1.0" and encoding equal to "UTF-8"

 XML Element start, named RootElement.
 XML Element start, named EMPNO
 XML Text node, with data equal to "IT1000" XML

Element end, named EMPNO
 XML Element start, named ENAME
 XML Text node, with data equal to "JAMES"
 XML Element end, named ENAME.
 XML Element start, named JOB
 XML Text node, with data equal to "COE"
 XML Element end, named JOB.
 XML Element start, named HIREDATE
 XML Text node, with data equal to "21-SEP-2000"
 XML Element end, named HIREDATE.
 XML Element end, named EMP

The SAX specification deliberately states that a given
section of text may be reported as multiple sequential text
events. Thus in the example above, a SAX parser may
generate a different series of events, part of which might
include:
 XML Element start, RootElement named EMP
 XML Element start, named

EMPNO,EMPNAME,JOB,HIREDATE
 XML Text node, with data equal to

"IT001,JAMES,COE,21-SEP-2001 "
 XML Text node, with data equal to "Text"
 XML Element end, named EMP.

XIII. TRANSFERRING DATA BETWEEN XML

DOCUMENTS AND RELATIONAL DATABASES

The work that has been carried out with reference to the

objective of integrating heterogeneous data bases is closely
dependantant on various technologies that go into the creation
of information systems.

Technologies assoicated with the creation of information

systems are:
 Object-oriented reperesentation
 Relational databases
 Extensible Markup Language(XML)

Sharing of Objects and XML is reduced into following

tasks

 fig 5 : Sharing of Objects and XML

a) Representation of Objects as XML (marshalling)
b) Transformation of XML to structures of Objects

(Unmarshalling)

 The proposed technique , part of a new framework is
the core of a middleware, connected as shown in fig.6. It has
the functional role in :

 Storing the XML documents in the relational databases
 Loading the XML documents from the relational

database

fig 6 : Relationship between XML and Relational Database

V. Rajeswari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 633-640

637

A Novel Approach for Integrating Heterogeneous
Database through XML

V.Rajeswari*, Dr. Dharmishtan K. Varughese **

* Department of Information Technology, Karpagam College of Engineering, Coimbatore 32

** Department of Electronics and Communication Engg, Karpagam College of Engineering, Coimbatore –32

Abstract - This paper illustrates an interactive mapping
technique based on XML technology being tested in some
possible scenarios and its adaptability verified in simplifying the
integration and exchange of data between different database
systems. This work is part of an effort in the development of a
new technique for storing and mapping XML and different types
of databases. The data from XML are compiled to MS-SQL
Server, Oracle, MySQL, MS-Access and IBM-DB2.

Keywords – Heterogeneous databases, DOM, XML Parser, SAX.

I. INTRODUCTION

Database systems are the store house tools and
backbones of the IT industry. In the early days the schemas
for the different databases were developed without
consideration of data integration with other systems [1]. They
had different terminologies and structures. Since world
information in the foreseeable future will continue to be saved
in relational data stores because of scalability, reliability and
performance reasons, it is now imperative to be able to map
XML to relational databases. It is used as a common data
format for cross-platform information exchange over the
internet [3]. It separates presentation from data structure and
content. But its rate of acceptance has been limited by the
mismatch between XML and legacy relational databases [2].
So a mediator is required to map XML documents to legacy
RDBMS.

Over the last few years, XML has become an
indisputable standard both for data exchange and content
management. XML has made an impression that XML
databases will eventually replace more traditional RDBMS.
Now the industry has started to move towards XML. As a
consequence, many thousands of database and application
developers are now facing the development challenge of
converting XML data to a relational format which is a
prerequisite for storing the vast amount of data in repositories.
XML is frequently used for publishing as well as exchanging
data.

II. NEED FOR EXTRACTING DATA FROM HETEROGENEOUS

DATA SOURCES

Data is typically stored in many different data storage
systems[4]. Extracting data from all sources and merging the
data into a single, consistent dataset is challenging. This
situation can occur for a number of reasons.

Trend Analysis refers to the concept of collecting
information and attempting to spot a pattern or trend [6] in the

information. Trend Analysis [6] refers to techniques for
extracting an underlying pattern of behavior in a time series
which would otherwise be partly or nearly completely hidden
by noise. A simple description of these techniques is trend
estimation which can be undertaken within a formal
regression analysis. The data of the organization are stored in
the legacy databases. These data are not useful for the day-to-
day operations. They are valuable for trend analysis that
requires data collected over a long period of time.

A Data warehouse [7] is a subject-oriented, integrated,
time-variant and non-volatile collection of data in support of
management’s decision making process. A data warehouse
provides a common data model for all data of interest
regardless of the data’s source. This makes it easier to report
and analyze information from multiple data models. In a
typical data warehousing application, the branches of an
organization [7]may use different data storage technologies to
store the operational data. The application package may need
to extract data from different relational databases before it can
merge the data.

III. XML IN EXTRACTING DATA FROM HETEROGENEOUS DATA

SOURCES

 XML can be used to describe and identify information
accurately [10] and unambiguously, in a way that
computers can be programmed to understand the
information.

 In XML model the documents and fragments of
documents are represented as ordered and node-labeled
trees [10].

 XML allows documents which are all the same type to be
created and handled consistently [10] and without
structural errors, because it provides a standardized way
of describing, controlling, or allowing/disallowing
particular types of document structure.

 XML provides a robust and durable format for
information storage and transmission. XML is robust
because it is based on a proven standard and it can be
tested and verified. XML is persistent because it uses
plain-text file formats which will outlast proprietary
binary ones.

 XML provides a common syntax for messaging systems
for the exchange of information between applications.
Previously, each messaging system had its own format
and all were different, which made inter-system
messaging unnecessarily messy, complex and expensive.

V. Rajeswari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 633-640

633

Processing Time - Different Databases

1 10 100 1000 10000

ORACLE 9i

DB2 Express C

SQL Server

MYSQL

MS-ACCESSD
a
t
a
b
a
s
e
s

Time in MS (log)

fig 10: Records inserted into ACCESS from XML File

fig 11: Records inserted into MYSQL from XML File

fig 12: Records inserted into DB2 from XML File

During the process of insertion into the database, the
processing time of each database management system is
measured.

S.No DBMS Processing Time

1 ORACLE 9i 10

2 DB2 Express C 24

3 SQL Server 1434

4 MYSQL 535

5 MS-ACCESS 5545

fig 13: Processing Time for different databases.

 fig 14: Processing Time – Graphical Representation

XVI. CONCLUSION

The creation of an integrated interface over a given set of
existing heterogeneous databases is a challenge faced by many
database administrators today. This paper has identified some
of the problems that arise during the schema integration
process. A methodology has been proposed for the creation of
an integrated schema from a given set of local database
schema. A Parser parses the file and the processing time is
calculated. The processing speed is calculated for different
types of databases and presented for evaluation.
 If the application requires moving data between
enterprises, XML is a good solution. XML sends data across
the Internet and through firewalls by using the standard HTTP
protocol. XML is also a good choice if application needs to
move data between hardware or software platforms.

REFERENCES
 [1] Frank S.C. Tseng, Heterogeneous database Integration

Using XML.
[2] Frank S.C. XML based heterogeneous Database

Integration for Data warehouse Creation.
[3] Yanxinwang, Kuiheyang “Research and Realization of

XML Based Heterogeneous Databases Integration”
[4] Wei- Jung Shiang, Minng-Ying Ho, “An Interactive Tool

Based on XML Technology for Data Exchange between
Heterogeneous ERP systems”, Journal of CIIE, Volume 22,
No.4, pp.273-278(2005).

[5] Guardalven “Integrating XML and
Relational Database Technologies” 8/12/04.

[6] Data Warehouses and OLAP: Concepts, Architectures and
Solutions
By Robert Wrembel, Christian Koncilia
Category: OLAP
Published Date: 2006-10-30

 [7] Shankar Pal,Istvan Cseri,Oliver Seeliger,Michael
Rys,Gideon Schaller, Wei Yu, Dragan Tomic,Adrian
Baras,Brandon Berg, Denis Churin, Eugene Kogan,
XQuery implementation in a Relational Database

V. Rajeswari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 633-640

639

System,Proceedings of the 31st VLDB conference,
Trondheim,Norway,2005.

 [8] Journal of Organizational Computing 5(2),167-193, (1995),
A Classification of Semantic Conflicts in Heterogeneous
Database Systems Channah E Naiman, Aris M. Ouksel,
University of Illinois at Chicago

 [9] http://www.ncbi.nlm.gov/sites/ppmc/articles/
 PMC2675489
[10] Felipe Victolla Silveira and Carlos A.Heuser, UFRGS,

Brazil, A Two Layered Approach for Querying Integrated
XML Sources.

[11] Data Warehouses and OLAP: Concepts, Architectures and
Solutions
By Robert Wrembel, Christian Koncilia
Category: OLAP
Published Date: 2006-10-30

 AUTHORS PROFILE

Ms. V. Rajeswari is Assistant
Professor in the Department of
Information Technology, Karpagam
College of Engineering, Anna
University of Technology, Coimbatore.
Her areas of specialisation and
research interest are J2EE and
Database Management Systems.

Dr. Dharmishtan K. Varughese is
Professor in the department of
Electronics and Communication Engg,
Karpagam College of Engineering,
Anna University of Technology,
Coimbatore. His areas of research
specialistion are Database
Management Systems, Micro Strip

Antennae and Antenna and Wave propagation.

V. Rajeswari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 633-640

640

